

PhD in Computer Science and Engineering Advanced Topics in Cybersecurity

Burglars IoT Paradise: Understanding and Mitigating Security Risks of General Messaging Protocols on IoT Clouds*

Gessildo Bengui gessildo.bengui@tecnico.ulisboa.pt

*Yan Jia

School of Cyber Engineering, Xidian University, China National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences ,China Indiana University Bloomington, USA

Agenda

- 1. Introduction
- 2. IoT in Cloud-based Platforms
 - Communication
 - Protection
 - Threat Model

3. Security Risk in MQTT for IoT in Cloud-based Platforms

- Analysis
- Measurement
- Mitigation Proposal
- 4. Discussion and Future Work
- 5. Related Work
- 6. Conclusion

Overview | IoT

August Smart Lock

Google Nest Thermostat

Amazon Echo Alexa

WeMo Smart Plug

Foobot Air

Quality Monitor

Ring L Doorbell U

Logitech Harmony Universal Remote

Combination of

Embedded systems + real-time analytics + Machine Learning + commodity sensors + Wireless sensor networks

that enables

Devices embedded with sensors and software to connect each other and with other systems for exchanging data over Internet. Margaret Rouse (2019)

Overview | IoT in Cloud-based Platforms

August Smart Lock

Google Nest Thermostat

Amazon Echo Alexa

WeMo Smart Plug

Foobot Air **Quality Monitor**

Ring

Doorbell

Logitech Harmony Universal Remote

IoT Cloud-based Platforms

Overview | IoT in Cloud-based Platforms Broker

August Smart Lock

Google Nest

Thermostat

Echo Alexa

WeMo Smart Plug

Foobot Air

Quality Monitor

Ring Doorbell

Logitech Harmony Universal Remote

IoT Cloud-based Platforms

Overview | IoT in Cloud-based Platforms | Broker | Example

Problems

Contributions

Communication | Protocol

- Cloud-based IoT is essentially support by a General Messaging.
- The most used communication protocol for IoT implementations on most Cloud Platforms for IoT is **MQTT**.
- MQTT (Message Queuing Telemetry Transport) is a OASIS and ISO communication protocol used for remote locations where a "small code footprint" is required or network bandwidth is limited*:
 - ✓ Lightweight.
 - ✓ publish-subscribe.
 - ✓ TCP/IP and WebSocket.

Communication | Architecture

Communication | Use of MQTT

Protection | Authentication

- MQTT connections go through WebSocket and TLS.
 - ✓ Both uses cryptographic certificate;
 - \checkmark Some cloud-based Platforms uses:
 - Its own username/password authentication mechanism (e. g. Amazon, Azure).
 - Single sign-on through Facebook/Google.

Protection | Authorization

- MQTT IoT cloud-based platforms aim to ensure that each user/client (Device or App user) can only send commands to and receive messages from the devices it is allowed to used.
- These authorization mechanisms are ensured through **publish/subscribe** model.

Amazon Echo Alexa

Protection | Threat Model

Amazon Echo Alexa

Protection | Threat Model | Context

- Any user (Attackers also) can:
 - > Open accounts:
 - ✓ With IoT Devices;
 - ✓ In IoT Cloud Platforms.
 - Collect and analyze network traffic between IoT cloud platform, IoT device and App under his legal control.
- IoT Cloud-based Platform is a pure device-sharing context:
 - Familiar apartments;
 - ➤ Hotels;
 - > Airbnb (Temporary and vacation rental).
- In the above context, users are always been granted temporary to the devices.

Analysis | Overview

The main idea in in this analysis was to check how MQTT in Cloud-based Platforms consider security aspects and related threats in perspectives of:

- Message;
- Session;
- Client Identity;
- Topics.

Analyze the the gaps in:

- MQTT original version;
- MQTT customized versions by Cloud-based platforms

Analysis | Attack #1: Unauthorized MQTT Messages

Analysis | Attack #1: Unauthorized MQTT Messages | Context

Will Message in MQTT

- A kind of MQTT message mostly used for exception handling scenario.
- Carries topics and payload (both commands and texts).
- Publish bu«y the server when client disconnects accidentally.

Analysis | Attack #1: Unauthorized MQTT Messages | Context

Unauthorized Will [and retained] Message

Analysis | Attack #2: Faults in Managing MQTT Sessions

Analysis | Attack #2: Faults in Managing MQTT Sessions | Context

MQTT Session

Analysis | Attack #2: Faults in Managing MQTT Sessions | Context

No-updated session subscription [and life cycle] state

Analysis | Attack #3: Unauthenticated MQTT Identity

Analysis | Attack #3: Unauthenticated MQTT Identity | Context

Identity Management in MQTT | ClientId

- The Client Identifier (ClientId) identifies the Client to the server. Each Client connecting to the Server has a **unique** ClientId."
- If two clients claim the same ClientId, **the later one will kick the connected one off.**

Analysis | Attack #3: Unauthenticated MQTT Identity | Context

ClientId in Vendors View

- Uniqueness
 - MAC Address.
 - Device Serial Number.
 - Are Guessable.
- One account can have multiple devices
 - Platform-layer identity.
 - Lack sufficient authentication.

Analysis | Attack #3: Unauthenticated MQTT Identity | Context

Denial-of-Service

Analysis | Attack #4: Authorization Mystery of MQTT Topics

Analysis | Attack #4: Authorization Mystery of MQTT Topics | Context

Topics in MQTT

- Insecure shortcut in protecting MQTT topics
 - MQTT topics are confidential.
 - But not a secret for ex-users.
- Expressive syntax of MQTT
 - #.
- Privacy implications of leaked MQTT messages.
 - Personally Identifiable Information.
 - Information captured by the device (temperature, lock status, air quality, etc).
 - Living habit.

Measurement | Scope and Magnitude

- Focused on design defects.
- Applied on eight leading IoT cloud-based platforms.
- Cover the four dimension of threats related in security analysis:
 - ✓ Identify management;
 - ✓ Message authorization;
 - ✓ Session management;
 - \checkmark Topic authorization.

Security Weaknesses		Alibaba	AWS	Baidu	Google	IBM^1		Microsoft	Suning	Tuya
ClientId Management		~	×	×	~	1	×	×	×	×
Message Authorization	Will Message	N/A	×	×	N/A	N/A	×	×	N/A	×
	Retained Message	N/A	N/A	×	N/A	N/A	N/A	N/A	N/A	N/A
Topic Authorization		~	×	1	~	1	1	1	×	~
Session Management	Subscription state	×	1	×	N/A	N/A	X	×	×	×
	Lifecycle state	<i>\</i>	×	×	1	1	×	×	×	×

X means the weakness was successfully exploited on the platform. ✓ means we were not able to exploit the weakness on the platform. N/A means the platform did not fully support the MQTT feature; or its security policy was too coarse-grained for us to test the fine-grained aspect, e.g., the platform did not support to revoke a client's capability to subscribe, so we could not adequately test its management of "subscription state". ¹ The left and right columns under IBM show the results of testing using the *device* client and *user* client respectively.

Measurement | Privacy Implications of Leaked MQTT Messages

- Attacks performed by exploring Fault in Managing MQTT Sessions and Authorization Mystery of MQTT Topics.
- Personal user data collected by authorized user (future attacker) by subscribing generic (all topics) with wildcard (#) and get these data after been revoked.
- When this information is combined for a longitudinal analysis, it's possible to infer private habits, routine behavior, cohabitant relation, etc.

Mitigation | Proposals

- Managing Protocol Identities and Sessions.
- Message-Oriented Access Control Model.
- Implementation and Evaluation.

Mitigation | Proposals | Managing Protocol Identities and Sessions

A key design principle in the adoption of a messaging protocol to the complicated and adversarial IoT systems is, *protocol-layer identity (e.g., ClientId), if any, should be authenticated; additionally, if the identity is used as a security token (e.g., session token), its confidentiality should be guaranteed.*

Identification mechanism can be improved by combination of **platform username/password + OAuthA + user** to create **p_user_id**.

Additionally, sessions in a messaging protocol should be guarded following the principle: *in the presence of an adversarial environment where subjects (e.g., a user) are expected to have privilege changes, session states, including protocol-agnostic states (e.g., lifecycle states) and protocol-specific states (e.g., subscription states), should accordingly keep updated in response.*

Mitigation | Proposals | Message-Oriented Access Control Model

A Key to securing a messaging protocol on IoT systems is to protect its message communication: *the system should govern the subjects' rights to send/receive messages, and additionally manage security implications in receiving a message with respect to the recipients' security requirement.*

- Using Message-Oriented Usage Control Model **(MOUCON)** that is extension of **UCON** and builds familiar concepts, such as:
 - **Subject (S):** clients in the communication (users and devices).
 - Subject Attributes (ATT(S)): ATT(S) = {id, URIw, URIr}.
 - **Object(O):** The set of messages that subjects hold rights on.
 - **Object Attributes (ATT(O)):** ATT(O) = {content, URI, source}.
 - Rights (R): are privileges that a subject(s) can hold and exercise on an object(o). Can be: Write (W) (e.g., publish a message) and Read (R) (e.g., subscribe/receive a message).
 - Authorizations: function that evaluate Rights(R) of ATT(S) against ATT(O).
 - ✓ allowed(s, o, R)) => (o.URI \in s.URIr) ^ (o.URI \in o.source.URIw)

Mitigation | Proposals | Implementation and Evaluation

To implement the proposed solution (Managing Protocol Identities and Sessions and Message-Oriented Access Control Model), the authors used Mosquitto 1.5.4 (a open source IoT cloud-based platform customized MQTT implementation), by modifying:

- It's relevant data structures relating to its messages (struct *mosquitto_msg_store*) by adding Security-related attributes (e.g., message' source);
- Adding authorization functions to its broker;
- Adding the proposed client identification mechanism (ClientId restriction in the broker's existing access control function used for establishing session).

Clients Num	1000			2000			4000			6000			8000		
	Without	With	Overhead												
	Protection	Protection	(%)												
Delay (s)	1.432	1.441	0.63	1.450	1.456	0.40	1.456	1.462	0.41	1.458	1.459	0.06	1.466	1.471	0.34
CPU (%)	19.1	22.2	5.52	23.2	25.6	10.34	24.4	26.9	10.25	27.6	29.6	7.34	29.5	32.2	9.15
MEM (KB)	6725	6734	0.13	6736	6740	0.05	6752	6756	0.05	6872	6880	0.12	6883	6963	0.16

4. Discussion and Future Work

Lessons learnt

- Most important:
 - Check and evaluate when applying a utility-oriented, common-purpose protocol to malicious parties.
 - Even after customized the protocol, please test and check and evaluate if all gaps are solved/closed.
 - The gap analysis must be based on **what the protocol can protect and what needs to be protected**.

4. Discussion and Future Work

Future Work

- Apply the same study in other similar protocols:
 - Firehose; CoAP;
 - AMQP;
 - JoyLink;
 - Alink
- Automated discovery of the flaws.
- MQTT 5.

5. Related Work

Main Work

- Security studies on MQTT
- Security studies on IoT cloud-based Platform

6. Conclusion

Key Outcomes

- First systematic study on security risks in use of general messaging protocol for IoT device-user communication.
- Identified, and shared with the eight most used/bigger IoT cloud-based platforms, the gaps between the protocol designed for simple and benign context versus in complicated and adversarial one, and the challenges in covering properly those gaps.
- Presented new design principles and proposed an enhanced access model.
- Proposal implemented and evaluated in real scenario and proved to be high effectiveness and efficiency.
- The new design principles and the enhanced protection model will lead to better protection of user-device interactions in the real world.

Appendix

Related Papers

- Study of Internet-of-Things Messaging Protocols Used for Exchanging Data with External Sources.
- SAFETHINGS: Data Security by Design in the IoT.
- Modelling and Evaluation of Malicious Attacks against the IoT MQTT Protocol.
- Modelling and Evaluation of Malicious Attacks against the IoT MQTT Protocol.
- On the Bulk Ingestion of IoT Devices from Heterogeneous IoT Brokers.
- CoAP and MQTT Based Models to Deliver Software and Security Updates to IoT Devices over the Air.
- Evaluation of Message Protocols for IoT.
- Implementation of MQTT Native Application for Tizen-Based Smartwatches.
- A Large-scale Empirical Study on the Vulnerability of Deployed IoT Devices.
- A Secure Corroboration Protocol for Internet of Things (IoT) Devices Using MQTT Version 5 and LDAP.

